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Abstract. In this paper we calculate the leading-order correction due to small statistical fluctuations around
equilibrium to the Bekenstein–Hawking entropy formula for the Achúcarro–Oritz black hole, which is the
most general two-dimensional black hole derived from the three-dimensional rotating Bañados–Teitelboim–
Zanelli black hole. Then we obtain the same correction to the Cardy–Verlinde entropy formula (which is
supposed to be an entropy formula of conformal field theory in any number of dimensions).

1 Introduction

It is commonly believed that any valid theory of quan-
tum gravity must necessary incorporate the Bekenstein–
Hawking definition of the black hole entropy [1,2] into its
conceptual framework. However, the microscopic origin of
this entropy remains an enigma for two reasons. First of
all, although the various counting methods have pointed
to the expected semi-classical result, there is still a lack
of recognition as to what degrees of freedom are truly be-
ing counted. This ambiguity can be attributed to most of
these methods being based on dualities with simpler the-
ories, thus obscuring the physical interpretation from the
perspective of the black hole in question. Secondly, the
vast and varied number of successful counting techniques
only serve to cloud up an already fuzzy picture.

The de Sitter/conformal field theory correspondence
(dS/CFT) [3–31] may hold the key to its microscopical
interpretation. Naively, we would expect the dS/CFT cor-
respondence to proceed along the lines of anti-de Sit-
ter/conformal field theory (AdS/CFT) correspondence
[32] because the de Sitter spacetime can be obtained
from an anti-de Sitter spacetime by analytically contin-
uing the cosmological constant to imaginary values. The
Cardy–Verlinde formula, proposed by Verlinde [33], re-
lates the entropy of a certain CFT with its total en-
ergy and its Casimir energy in arbitrary dimensions. Us-
ing the AdSd/CFTd−1 and dSd/CFTd−1 correspondences,
this formula has been shown to hold exactly for different
black holes. In a previous paper [28], by using the Cardy–
Verlinde formula, we have obtained the entropy of the
Achúcarro–Oritz black hole which is a two-dimensional
black hole derived from the three-dimensional rotating
BTZ black hole.
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In 1992 Bañados, Teitelboim and Zanelli (BTZ) [34,
35] showed that (2 + 1)-dimensional gravity has a black
hole solution. This black hole is described by two (gravi-
tational) parameters, the mass M and the angular mo-
mentum (spin) J . It is locally AdS and thus it differs
from the Schwarzschild and Kerr solutions since it is an
asymptotically anti-de Sitter instead of a flat spacetime.
Additionally, it has no curvature singularity at the origin.
AdS black holes are members of this two-parametric fam-
ily of BTZ black holes, and they are very interesting in
the framework of string theory and black hole physics [36,
37].

For systems that admit 2D CFTs as duals, the Cardy
formula [38] can be applied directly. This formula gives the
entropy of a CFT in terms of the central charge c and the
eigenvalue of the Virasoro operator l0. However, it should
be pointed out that this evaluation is possible as soon as
one has explicitly shown (e.g. using the AdSd/CFTd−1
correspondence) that the system under consideration is in
correspondence with a 2D CFT [39,40].

In [39] Cadoni and Mignemi, using the Cardy for-
mula, have calculated the statistical entropy of the two-
dimensional Jackiw–Teitelboim black hole, which can be
considered as the dimensional reduction of the j = 0 (zero
angular momentum) BTZ black hole. Using a canonical re-
alization of the asymptotic symmetry of two-dimensional
anti-de Sitter space and Cardy’s formula, they have calcu-
lated the statistical entropy of a 2D black hole. In this case
this reference relates a two-dimensional black hole to a
one-dimensional CFT, living on the boundary of AdS2. In
fact the one-dimensional nature of the boundary CFT im-
plies that we are dealing with some kind of particle quan-
tum mechanics, rather than quantum field theory. On the
other hand, as has been shown in second paper by Cadoni
and Mignemi [39], in the family of the AdSd/CFTd−1 du-
alities, the d = 2 case is very similar to the d = 3 one, the
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conformal group being in both instances infinite dimen-
sional. But a feature that is peculiar to the d = 2 case is
the complete equivalence of the diffeomorphisms and the
conformal group in one dimension. The physical implica-
tion of this equivalence is that the usual difference between
gauge symmetries and symmetries related to conserved
charges disappears. If one accepts that the d = 2 case is
not fundamental then the CFT1 should be thought of just
as (half) of CFT2, in the way explained in [39]; therefore
in the d = 2 context the general AdSd/CFTd−1 duality be-
comes a duality between two 2D conformal field theories.
Although the possibility of describing 2D black holes by
means of a CFT has been widely investigated [39,41–43],
it is not completely clear if it is always possible to mimic
the gravitational dynamics of the 2D black hole through
a CFT. However, in some cases and/or for generic black
holes in particular regimes, CFTs have been shown to give
a good description; this is in particular true for black holes
in AdS space. In this paper I consider the two-dimensional
Achúcarro–Oritz black hole which is asymptotically AdS2,
then I show a 2D CFT to give a good description in this
case also. When the black hole is put in correspondence
with a 2D CFT, the entropy of the black hole horizon is
reproduced using the Cardy–Verlinde formula.

There has been much interest recently in calculating
the quantum corrections to SBH (the Bekenstein–Hawking
entropy) [44–80]. The leading-order correction is propor-
tional to lnSBH. There are two distinct and separable
sources for this logarithmic correction [71,74] (see also
the recent paper by Gour and Medved [78]). Firstly, there
should be a correction to the number of microstates, which
is a quantum correction to the microcanonical entropy;
secondly, as any black hole will typically exchange heat or
matter with its surroundings, there should also be a cor-
rection due to thermal fluctuations in the horizon area.
In a recent work, Carlip [46] has deduced the leading-
order quantum correction to the classical Cardy formula.
The Cardy formula follows from a saddle-point approx-
imation of the partition function for a two-dimensional
conformal field theory. This leads to the theory’s density
of states, which is related to the partition function by way
of a Fourier transform [81]. In [66] Medved has applied
Carlip’s formulation to the case of a generic model of two-
dimensional gravity with coupling to a dilaton field.

In this paper we consider the Achúcarro–Oritz black
hole, In Sect. 2 we calculate the corresponding thermody-
namical quantities for black hole horizon. In Sect. 3 we
calculate the leading-order correction due to small statis-
tical fluctuations around equilibrium to the Bekenstein–
Hawking entropy formula, and then we obtain the same
correction to the Cardy–Verlinde entropy formula. In the
other term we assume the equality of the Bekenstein–
Hawking and the CFT entropy; then we use the known
statistical corrections to the Bekenstein–Hawking entropy
to predict the corrections to the Cardy–Verlinde formula.
The last section contains a summary of this paper.

2 Thermodynamical quantities
of the Achúcarro–Oritz black hole

The black hole solutions of Bañados, Teitelboim and
Zanelli [34,35] in (2+1) spacetime dimensions are derived
from a three-dimensional theory of gravity:

S =
∫

dx3√−g
(

(3)R + 2Λ
)

, (1)

with a negative cosmological constant (Λ = 1
l2 > 0).

The corresponding line element is

ds2 = −
(

−M +
r2

l2
+

J2

4r2

)
dt2 +

dr2(
−M +

r2

l2
+

J2

4r2

)

+ r2
(

dθ − J

2r2 dt

)2

. (2)

There are many ways to reduce the three-dimensional
BTZ black hole solutions to the two-dimensional charged
and uncharged dilatonic black holes [82,83]. The Kaluza–
Klein reduction of the (2+1)-dimensional metric (2) yields
a two-dimensional line element:

ds2 = −g(r)dt2 + g(r)−1dr2, (3)

where

g(r) =
(

−M +
r2

l2
+

J2

4r2

)
, (4)

with M the Arnowitt–Deser–Misner (ADM) mass, J the
angular momentum (spin) of the BTZ black hole and
−∞ < t < +∞, 0 ≤ r < +∞, 0 ≤ θ < 2π.

The outer and inner horizons, i.e. r+ (henceforth sim-
ply the black hole horizon) and r− respectively, concerning
the positive mass black hole spectrum with spin (J �= 0)
of the line element (3) are given by

r2
± =

l2

2

(
M ±

√
M2 − J2

l2

)
, (5)

and therefore, in terms of the inner and outer horizons,
the black hole mass and the angular momentum are given,
respectively, by

M =
r2
+

l2
+

J2

4r2
+

(6)

and
J =

2 r+r−
l

, (7)

with the corresponding angular velocity

Ω =
J

2r2
+

. (8)

The Hawking temperature TH of the black hole horizon
is [84]

TH =
1

2πr+

√(
r2
+

l2
+

J2

4r2
+

)2

− J2

l2
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=
1

2πr+

(
r2
+

l2
− J2

4r2
+

)
. (9)

In two spacetime dimensions we do not have an area
law for the black hole entropy; however, one can use a
thermodynamical reasoning to define the entropy [84]

SBH = 4πr+. (10)

The specific heat of the black hole is given by

C =
dE

dT
=

dM

dT
= 4πr+

(
r2
+ − r2

−
r2
+ + 3r2−

)

= SBH

(
r2
+ − r2

−
r2
+ + 3r2−

)
; (11)

if r+ > r−, then the above specific heat is positive. The
stability condition is equivalent to the specific heat being
positive, so that the corresponding canonical ensemble is
stable.

3 Logarithmic correction
to the Bekenstein–Hawking entropy
and Cardy–Verlinde formula

There has been much interest recently in calculating the
quantum corrections to SBH (the Bekenstein–Hawking en-
tropy) [44–80]. The corrected formula takes the form

S = S0 − 1
2
lnC + . . . (12)

When r+ � r−, C � SBH = S0 in which case we have

S = S0 − 1
2
lnS0 + . . . (13)

It is now possible to drive the corresponding correction
to the Cardy–Verlinde formula. In a recent paper, Verlinde
[33] proposed a generalization of the Cardy formula, which
holds for the (1 + 1) dimensional conformal field theory
(CFT), to (n+1)-dimensional spacetime described by the
metric

ds2 = −dt2 + R2dΩn (14)

where R is the radius of a n-dimensional sphere.
The generalized Cardy formula (hereafter named the

Cardy–Verlinde formula) is given by

SCFT =
2πR√

ab

√
EC (2E − EC), (15)

where E is the total energy, EC is the Casimir energy,
and a and b are a priori arbitrary positive coefficients,
independent of R and S. The definition of the Casimir
energy is derived by the violation of the Euler relation as

EC ≡ n (E + pV − TS − JΩ) , (16)

where the pressure of the CFT is defined as p = E/nV .
The total energy may be written as the sum of two terms

E(S, V ) = EE(S, V ) +
1
2
EC(S, V ), (17)

where EE is the purely extensive part of the total energy
E. The Casimir energy EC as well as the purely extensive
part of the energy EE expressed in terms of the radius R
and the entropy S are written as

EC =
b

2πR
S1− 1

n , (18)

EE =
a

4πR
S1+ 1

n . (19)

After the work of Witten on the AdSd/CFTd−1 correspon-
dence [85], Savonije and Verlinde proved that the Cardy–
Verlinde formula (15) can be derived using the thermody-
namics of AdS–Schwarzschild black holes in an arbitrary
number of dimensions [86]. For the present discussion, the
total entropy is assumed to be of the form (13), where the
uncorrected entropy, S0, corresponds to the associated one
in (10). Since the two-dimensional Achúcarro–Oritz black
hole is asymptotically anti-de Sitter, the total energy is
E = M . It then follows by employing (6)–(9) that the
Casimir energy (16) can be expressed in term of the un-
corrected entropy:

EC =
J2

2r2
+

− 1
2
THLnS0, (20)

Then by setting the above corrected Casimir energy in
(15) and expanding in terms of 1

2THLnS0 we obtain

2πR√
ab

√
EC (2E − EC)

� S0

(
1 +

1
2
TH lnS0

EC − E

EC(2E − EC)

)
. (21)

In the limit where the correction is small, the coefficient of
the logarithmic term on the right-hand side of (21) can be
expressed in terms of the energy and the Casimir energy:

(EC − E)
2EC(2E − EC)

THS0 =
(EC − E)(2E − EC − Eq)

2EC(2E − EC)
, (22)

where
Eq = Qφ = JΩ (23)

is the electromagnetic energy; in our analysis the charge
Q is the angular momentum J of the two-dimensional
Achúcarro–Oritz black hole, and the corresponding elec-
tric potential φ is the angular velocity Ω. We may con-
clude, therefore, that, in the limit where the logarithmic
corrections are sub-dominant, (21) can be rewritten to ex-
press the entropy in terms of the energy and the Casimir
energy. We have

S0 =
2πR√

ab

√
EC (2E − EC) (24)
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− (EC − E)(2E − EC − Eq)
2EC(2E − EC)

× ln
(

2πR√
ab

√
EC (2E − EC)

)
,

and consequently, the total entropy (13), to first order in
the logarithmic term, is given by

S � 2πR√
ab

√
EC (2E − EC)

−
(

(EC − E)(2E − EC − Eq)
2EC(2E − EC)

+
1
2

)

× ln
(

2πR√
ab

√
EC (2E − EC)

)
. (25)

Therefore, taking into account thermal fluctuations de-
fines the logarithmic corrections to the black hole en-
tropies. As a result the Cardy–Verlinde formula receives
logarithmic corrections in our Achúcarro–Oritz black hole
background in two dimensions, in a way similar to the
Cardy–Verlinde formula for the SAdS and SdS black holes
in five dimensions [77,79] also for TRNdS black holes in
any number of dimensions [80]. It is easily seen that the
logarithmic prefactor is negative and therefore the ther-
mal corrections are also negative. Furthermore, the en-
tropy of the two-dimensional Achúcarro–Oritz black hole
described in the context of the analysis by Das et al. [47]
by the modified Cardy–Verlinde formula satisfies the holo-
graphic bound [87].

4 Conclusion

For a large class of black holes, the Bekenstein–Hawking
entropy formula receives additive logarithmic corrections
due to thermal fluctuations. On the basis of general ther-
modynamic arguments, Das et al. [47] deduced that the
black hole entropy can be expressed as

S = ln ρ = S0 − 1
2

ln
(
C T 2)+ · · · . (26)

In this paper we have analyzed this correction of the en-
tropy of the Achúcarro–Oritz black hole in two dimensions
in the light of AdS/CFT. We have obtained the logarith-
mic correction to the black hole entropy. Then using the
form of the logarithmic correction (13) we have derived
the corresponding correction to the Cardy–Verlinde for-
mula, which relates the entropy of a certain CFT to its
total energy and Casimir energy. The result of this paper
is that the CFT entropy can be written in the form (25).
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35. M. Bañados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys.
Rev. D 48, 1506 (1993)

36. J. Maldacena, J. Michelson, A. Strominger, JHEP 9902,
011 (1999)

37. M. Spradlin, A. Strominger, JHEP 9911, 021 (1999)



M.R. Setare: Logarithmic correction to the Cardy–Verlinde formula in Achúcarro–Oritz black hole 559
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